



## Environmentally friendly production of marine shrimp *Penaeus vannamei* in super intensive systems in the state of Virginia

Otávio Augusto L. F. Pimentel









## Introduction

- Currently, aquaculture is seeking biosafe systems with less impact on the natural environment.
- In this way, systems such as the Recirculating Aquaculture System (RAS) and the biofloc system (BFT) can combine sustainability with increased production.







- RAS is characterized by a controlled environment;
- Removal of animal metabolites and organic matter residues;
- Mechanical and/or biological filtration;
- Provides high water reuse;
- Improves waste management, reduces water use and provides nutrient cycling.



Ahmed et al. (2021)









MOLASSE

A Good Source of Cal NET WTILBIAS

#### **BFT** system

- Microbial-based system;
- Organic carbon source use;
- Stimulates the growth of heterotrophic and nitrifying bacteria;
- Immobilizes ammonia produced in the system;
- These groups of bacteria acts in the cycling of nitrogen in the system;
- Tansformation of nitrogen in water into microbial protein.











#### **Bioflocs are grown in the system**

- Composed by microorganisms and organic matter;
- They maintain system stability.

## **BFT system provides**

- High stocking densities;
- Reduced water use;
- No effluent discharge;
- Small areas;
- Increased biosecurity.









## 2 trials

• Virginia Seafood Agricultural Research and Extension Center (VSAREC), Hampton.











## **Trial 1**

Evaluate the influence of the addition of copepod Apocyclops panamensis on the culture of Penaeus vannamei reared in a BFT system.

Dariano Krummenauer, Steve Urick, Caio A. Miyai, Flávia Banderó Höffling, José Maria Monserrat, Abdelnaser Bayoumy, Reza Ovissipour, and Michael Schwarz.











- 60 day-trial;
- *Penaeus vannamei* (0.056 ± 0.003 g);
- Stocking density: 500 shrimp m<sup>-3</sup>;
- Apocyclops panamensis (5.0 mL<sup>-1</sup>);
- Nine circular tanks 300 L.

#### Treatments

- T1 Clear Water + Copepod;
- T2 BFT+ Copepod;
- T3 BFT without Copepod.













- Shrimp were fed with a commercial diet (Zeigler Bros);
- Copepod were fed with Rotigrow Plus Algal Blend (Reed Mariculture);
- BFT Treatments: No water exchange;
- CW Treatment: 100% of Water exchange.













Water quality

#### Daily

Temperature, Salinity, Dissolved oxygen, and pH.

#### **Every three days**

- Total ammonia nitrogen (TAN);
- Nitrite nitrogen  $(NO_2^{-}-N);$
- Nitrate nitrogen  $(NO_3^--N)$ .

## Once a week

- Alkalinity; •
- Total suspended solids (TSS); •
- Settleable solids (SS). •







#### **Results and discussion**

Water quality

• Control of TAN in all treaments.

#### **Clear water**

• TAN control due to daily water changes.







- Treatments with the addition of copepods provided better nitrite control.
- The presence of copepods in the System may have influenced the microbial composition of the system.







- Gradual accumulation of nitrate;
- Treatment where BFT was used;
- Last weeks of culture;
- Commonly reported pattern in shrimp farming with BFT.







#### Shrimp growth

| Treatment | Final Weight (g) | WGR (g)           | Yield (Kg/m <sup>3</sup> ) | Survival (%) | FCR  |
|-----------|------------------|-------------------|----------------------------|--------------|------|
| CW + COP  | 11.82±1.56       | <b>2.42</b> ±0.41 | 5.07±0.14                  | 91.25±4.57   | 1.20 |
| BFT + COP | 11.85±2.08       | 2.38±0.17         | 4.67±0.86                  | 83.54±6.53   | 1.30 |
| BFT       | 11.74±2.12       | 3.13±0.30         | 4.23±0.93                  | 74.14±4.57   | 1.44 |
|           |                  |                   |                            |              |      |





#### Shrimp growth

| Treatment | Final Weight (g) | WGR (g)           | Yield (Kg/m³) | Survival (%) | FCR  |
|-----------|------------------|-------------------|---------------|--------------|------|
| CW + COP  | 11.82±1.56       | <b>2.42</b> ±0.41 | 5.07±0.14     | 91.25±4.57   | 1.20 |
| BFT + COP | 11.85±2.08       | 2.38±0.17         | 4.67±0.86     | 83.54±6.53   | 1.30 |
| BFT       | 11.74±2.12       | 3.13±0.30         | 4.23±0.93     | 74.14±4.57   | 1.44 |
|           |                  |                   |               |              |      |





#### Shrimp growth

| Treatment | Final Weight (g) | WGR (g)           | Yield (Kg/m³) | Survival (%) | FCR    |  |
|-----------|------------------|-------------------|---------------|--------------|--------|--|
| CW + COP  | 11.82±1.56       | <b>2.42</b> ±0.41 | 5.07±0.14     | 91.25±4.57   | 1.20 🗲 |  |
| BFT + COP | 11.85±2.08       | 2.38±0.17         | 4.67±0.86     | 83.54±6.53   | 1.30 🗲 |  |
| BFT       | 11.74±2.12       | 3.13±0.30         | 4.23±0.93     | 74.14±4.57   | 1.44   |  |
|           |                  |                   |               |              |        |  |





## Conclusion

- The copepod addition provided better fixation of nitrifying bacteria resulting in a better control of nitrogenous compounds.
- Addition of copepods improved feed use, since FCR was lower in treatments where copepods were supplemented.











## Trial 2

#### Evaluate the growth of Penaeus vannamei reared in a BFT and RAS system

Bianca Ramiro, Steve Urick, Ethan McAlhaney, Taozhu Sun, Otávio Augusto Pimentel, Jonathan van Senten, Michael Schwarz, and Dariano Krummenauer.











- 68 day-trial;
- *Penaeus vannamei* (0.102 ± 0.04g);
- Stocking density: 500 m<sup>-3</sup>;
- Six circular tanks 100 L.

#### Treatments

- T1 BFT;
- T2 RAS.











- Shrimp were fed with a commercial diet (Zeigler Bros);
- BFT: water changes between 20 and 30% of the volume of the experimental unit were performed to maintain the concentration of nitrogen compounds within the safe level for the species;
- RAS: Backwash three times a week. Replace the sump with water with a salinity close to  $30 \text{ g L}^{-1}$ .











Water quality

## Daily

- Temperature, salinity, dissolved oxygen, and pH; •
- Total ammonia nitrogen (TAN);
- Nitrite nitrogen ( $NO_2^{-}-N$ ). •

## **Once a week**

- Nitrate nitrogen (NO<sub>3</sub><sup>-</sup>-N); •
- Alkalinity; lacksquare
- Total suspended solids (TSS);
- Settleable solids (SS).









#### **Results and discussion**

Water quality

- TAN control was better in RAS;
- TAN control in the BFT treatment was observed from day 20 of the experimental time;
- Establishment of the ammonium oxidizing bacteria (AOB) community.







- Establishment of AOB confirmed with the increase in nitrite from the 20<sup>th</sup> of the trial;
- No nitrite control was observed throughout the trial;
- RAS: nitrite remained below 1 mg L<sup>-1</sup>.







- Increasing pattern of nitrate in BFT treatment;
- Low nitrate concentrations in the RAS are explained by backwashing.







16.00

14.00

12.00

10.00

**b** 8.00

6.00

4.00

2.00

0.00

#### Shrimp growth





Final weight (g)

■ BFT ■ RAS





Yield (Kg m<sup>-3</sup>) Survival (%) 7.00 100.00 90.00 6.00 80.00 5.00 70.00 60.00 4.00 Kg m<sup>-3</sup> BFT % 50.00 RAS 3.00 40.00 2.00 30.00 20.00 1.00 10.00 0.00

0.00



BFT

RAS













#### Conclusion

- Complete maturation of the system was not observed in the BFT treatment throughout the experimental time;
- The control of nitrogenous compounds was better in the RAS treatment;
- Shrimp growth was better in the BFT treatment than in the RAS treatment;
- Higher yield of the BFT treatment, when compared to RAS.







#### Perspectives

- The state of Virginia has great potential to produce shrimp in biosecure systems, such as RAS and BFT.
- Studies can be carried out seeking to enable the marine shrimp culture using low salinity water, increasing opportunities to bring marine shrimp farming to inland regions.





# VIRGINIA AGRICULTURAL RESEARCH AND EXTENSION CENTERS



nutrition through innovation













Conselho Nacional de Desenvolvimento Científico e Tecnológico Thank you!